
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	snoop 0.7 documentation 
 
      

    


    
      
          
            
  
Welcome to snoop’s documentation!

snoop is an online data processing and monitoring tool developed for the SNO+ experiment. It reads event data from a file or avalanche [http://github.com/mastbaum/avalanche] dispatcher and calculates statistics. It is used to monitor the quality of the data being taken.


Overview

snoop is based on “processor model,” not unlike RAT. Processors are called for each event, and may operate on and store that data as needed. Processors are “sampled” with a user-defined period. When sampled, a processor creates a document, which is subsequently written out (probably to a database).

With this model, there are two main classes of processors:


	Processors that look at every event, gathering data, and when sampled compute and returns statistics related to that data

	Processors that ignore events, and perform some action when sampled, like query a server to get its disk usage



In either case, a document is produced that represents a snapshot of the parameters the processor cares about.

snoop can only get the samples to a database; the user interface layer is handled by separate software, e.g.:

data stream --Reader-> snoop --Writer-> database --REST API-> woodstock -> client



woodstock [http://github.com/mastbaum/woodstock] was developed as a front-end.




Installation

snoop is packaged with setuptools for easy installation. To install directly from the repository, run:

$ pip install -e git+git://github.com/mastbaum/snoop.git#egg=snoop






Usage

snoop is intended to be run as a daemon, but additionally can be run in the foreground or used from Python.

You can communicate with snoop processes using signals, most importantly SIGUSR1 (10), which will reload processors from the configured processor path. If processors define a load function, this is used to copy state from the old processor instances to the new ones upon reloading.


Configuration

snoop is configured using a Python module as a configuration file. The following must be defined:


	sample_period: The time between samples, in seconds

	processor_paths: List of Python paths to processors, as (path, fromlist) tuples

	writer: A Writer subclass instance with which to handle output

	reader: A Reader subclass instance, from which events will be read



processor_kwargs, a {'name': dict} dictionary may also be defined to supply keyword arguments to processors.

The default configuration file path is ./config.py.




Daemon

To run snoop as a daemon:

$ snoop -d [/path/to/config.py]






CLI

To run snoop on the command line:

$ snoop [/path/to/config.py]






Python module

To use snoop from Python:

>>> import snoop





All of snoop’s functionality is available in Python modules – see API documentation for detail details.








History

This software is completely distinct from the old snoop used in SNO, sharing only the name and purpose.




Documentation



	snoop Python API
	Processors

	Readers

	Writers





	snoop Design
	Design Criteria

	Design Choices












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	snoop 0.7 documentation 
 
      

    


    
      
          
            
  
snoop Python API


Processors


	
class snoop.processor.Processor

	A Processor represents a chunk of analysis code that can be placed into
the event loop by the user.


	
event(event)

	Called once per event.






	
load(rhs)

	Load data from another instance. Called when instances are replaced
during a module reload.






	
sample()

	Called periodically, “sampling” the processor state.










	
exception snoop.processor.ProcessorAbort(value)

	Processors should throw ProcessorAbort to indicate that a problem
happened, but that the processor should remain in the event loop.






	
class snoop.processor.ProcessorBlock(processors, kwargs={})

	A processor block is analagous to a block of Python statements.  It
consists of a list of processors, calling each of their event methods
when event is called, and each of their sample methods when sample
is called.

There are two ways to create a block of processors: either provide a list
of Processor instances or a list of (module_name, fromlist) tuples.
In the latter case, an instance of every Processor found in the given
modules will be added.


	
event(ev)

	Call Processor.event(ev) for each processor






	
load_processors(paths, kwargs={}, preserve=True)

	(Re)load all processors found in the provided paths and add them to
this ProcesorBlock. If preserve is true, load the new instances
with the data from the old via Processor.load, providing some
rudimentary “schema evolution.”






	
sample()

	Call Processor.sample() for each processor.

This is done asynchronously with a thread pool farm sampling out to
multiple cores and prevent I/O-heavy sample methods from blocking
processing.

Returns a multiprocessing.pool.AsyncResult; get() the results out
when it is ready().












Readers


	
class snoop.reader.DispatchReader(address)

	Read records from the dispatcher stream at address.


	
add_db(host, dbname, mapper)

	Attach a database changes feed to this reader. See avalanche
documentation for more details.






	
add_dispatcher(address)

	Attach an additional dispatch stream to this reader. See avalanche
documentation for more details.






	
read()

	Generator of events from the dispatcher.










	
class snoop.reader.ROOTFileReader(filenames, tree_name, branch_name, obj)

	Read entries from a ROOT tree in a file.


	
load_tree()

	Load the ROOT tree for reading. This is deferred until the first
read to prevent file descriptors from getting lost if running as a
daemon.






	
read()

	Generator of entries on the requested branch. Raises StopIteration
when no more entries are available.












Writers


	
class snoop.writer.CouchDBWriter(host, dbname, username=None, password=None)

	Output handler that writes to a CouchDB database.






	
class snoop.writer.PrintWriter

	Output handler that just prints.






	
class snoop.writer.Writer

	Output handler (base class).











          

      

      

    


    
         Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	snoop 0.7 documentation 
 
      

    


    
      
          
            
  
snoop Design

This document outlines the design requirements for a SNOOP replacement, covering features found in both snoop [http://github.com/mastbaum/snoop] and woodstock [http://github.com/mastbaum/woodstock].


Design Criteria


Logic Layer


	Polls the same data sources as old snoop
	Dispatcher

	Alarms

	DAQ/Computer status

	Data flow





	Runs forever
	Cannot crash

	Cannot be restarted










Data Layer


	Query over time ranges

	Query fields selecting on other fields

	Caching of large/frequent requests

	Persistent

	Automatic fault recovery or replication






Presentation Layer


	Sensible defaults, highly configurable

	Programmable by non-experts (ASCII templating)

	Alarms immediate but not intrusive

	Plotting of arbitrary data
	Histograms

	Time series

	Scatter plots












Design Choices


Logic Layer


	Python daemon
	Communication through signals

	start, stop, restart, reload operations

	Dynamic module reloading while running





	Processor model
	Arbitrary processor code
	Aggregated event data

	Polling external sources





	Called per event

	State sampled at regular interval
	Asynchronous

	Output handled by writer
	Push to database

	Log, email, alarm, ...


















Data Layer


	CouchBase server
	JSON key/value store

	High performance
	Incremental view indexing

	In-memory caching

	Clustered









	Python/WSGI interface
	Implements REST API for client queries
	Date ranges, SELECT-like operations














Presentation Layer


	snoop Web Interface
	Templates written in ReST/Markdown with special tags

	Framework renders templates as HTML + JS (Backbone?)















          

      

      

    


    
         Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          modules |

        	snoop 0.7 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   s
   


   
     			

     		
       s	

     
       	[image: -]
       	
       snoop	
       

     
       	
       	
       snoop.processor	
       

     
       	
       	
       snoop.reader	
       

     
       	
       	
       snoop.writer	
       

   



          

      

      

    


    
         Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          modules |

        	snoop 0.7 documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | D
 | E
 | L
 | P
 | R
 | S
 | W
 


A


  	
      
  	add_db() (snoop.reader.DispatchReader method)
  


  

  	
      
  	add_dispatcher() (snoop.reader.DispatchReader method)
  


  





C


  	
      
  	CouchDBWriter (class in snoop.writer)
  


  





D


  	
      
  	DispatchReader (class in snoop.reader)
  


  





E


  	
      
  	event() (snoop.processor.Processor method)
  


      	
        
  	(snoop.processor.ProcessorBlock method)
  


      


  





L


  	
      
  	load() (snoop.processor.Processor method)
  


      
  	load_processors() (snoop.processor.ProcessorBlock method)
  


  

  	
      
  	load_tree() (snoop.reader.ROOTFileReader method)
  


  





P


  	
      
  	PrintWriter (class in snoop.writer)
  


      
  	Processor (class in snoop.processor)
  


  

  	
      
  	ProcessorAbort
  


      
  	ProcessorBlock (class in snoop.processor)
  


  





R


  	
      
  	read() (snoop.reader.DispatchReader method)
  


      	
        
  	(snoop.reader.ROOTFileReader method)
  


      


  

  	
      
  	ROOTFileReader (class in snoop.reader)
  


  





S


  	
      
  	sample() (snoop.processor.Processor method)
  


      	
        
  	(snoop.processor.ProcessorBlock method)
  


      


      
  	snoop.processor (module)
  


  

  	
      
  	snoop.reader (module)
  


      
  	snoop.writer (module)
  


  





W


  	
      
  	Writer (class in snoop.writer)
  


  







          

      

      

    


    
         Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        	latest

      
    

  










  _static/down.png





_static/plus.png





_static/comment.png





_static/minus.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





data.html

    
      Navigation


      
        		
          index


        		
          modules |


        		
          previous |


        		snoop 0.7 documentation »

 
      


    


    
      
          
            
  
SNOOP Monitoring Categories



General



Meta



		Run number


		Run type


		Last update time


		Last update GTID


		SNOOP memory/CPU usage








Alarm Summary



		Alarm name / status








CMA Summary



		CMA Alarm / status








Start of Run Checks



		Link to “neutrino report cards”
* Neutrino report card: per run pass/fail for status tests: Run mask (!&UC), crate mask, trigger mask, trigger thresholds, pulser enabled, pedestals disabled, percent of nhit triggers per crate, blind flasher check, trigger on/hv off check, event rate, pulse gt rate, orphan count, no zero occ normal/owl/butt/neck paddle cards, inter`event timing, clock drift, cgt/cmos errors, lgi select errors










Run Statistics



Summary



		Duration


		Events analyzed


		Orphans


		lone orphans*


		owl/neck/butt events*


		event rate*


		dispatch rate








Last run record



		Date


		Time


		ID


		Valid GTID








Run type



		List of names








Crate mask



		List of IDs








Source mask



		List of names








Last TRIG record



		GTID


		Lockout width








Trigger Settings (table)



		Masked in


		Threshold


		Zero


		Zero diff


		Alarm zero


		Alarm zero diff








Other triggers masked in



		List of names








NHIT statistics



		Mean*


		Count nhit < 30*


		Count nhit >= 30*


		Mean orphan nhit








Triggers (table)



		ID


		Name


		Number


		Short frac/rate/mean/rms


		Run frac/rate/mean/rms








Derived trigger stats



		N100M/PULSEGT


		ESHI/PULSEGT








Solar neutrino flux



		CC: short/run/units


		ES: short/run/units


		NC: short/run/units


		Solar core temp: short/run/units








Event pathologies (table)



		Rows: Sharkfin, flasher, neck, junk, elecpickup, muon, muonfollower, lightwater, unidentified h/m/l, burst


		Short count, rate, mean nhit, percent


		Run count, rate, mean nhit, percent








Analog Measurement Board



		All data: differential (mean), integral (mean), peak (mean)


		PGT: differential (mean), integral (mean), peak (mean)


		Nhit > 30 && !ESUMHI: (integral`integral pedestal)/nhits, (peak`peak pedestal)/nhits








Timing and CMOS



		Mean 10MHz vs 50MHz inter`event timing difference


		Peak 10MHz vs 50MHz clock drift


		Count of consecutive event pairs < 410 ns apart


		Count of CGT SYNC CLEAR 16 errors


		Count of CGT SYNC CLEAR 24 errors


		Count of CMOS SYNC CLEAR 16 errors


		Count of PMT LGI SELECT errors








DQXX



		File, date


		Sequencers enabled (value out of total)


		20ns triggers enabled


		100ns triggers enabled


		HV resistors pulled


		HV cables pulled


		Channels not operational


		Relays enabled


		OWL/BUTT/NECK relays enabled








Occupancy



		Mean/low/high occupancy: short/med/run


		Total/normal tubes: short/med/run


		Zero/low/high occupancy tubes: short/med/run


		Zero occupancy PCs


		Zero occupancy NECK/OWL/BUTTs


		Zero occupancy BUTT/OWL PCs


		Crate occupancies (short)








Charge distribution plots



		Links to QHS, QHL, QLX, T plots








Base current and CMOS rate information



		Empty








CMA information



		Link to graphs








Hydrophone information



		Link to graphs








NCD information



		Empty








NHIT Trigger Monitor



		NHIT100MED: number, timestamp


		NHIT100HI: number, timestamp


		NHIT20: number, timestamp










Data Flow



		Current run


		UGND: date, last file on disk, last transferred AG, tape ID, last to tape, tape usage


		AGND: date, last file on disk, last transferred to surf, tape ID, last to tape, tape usage











          

      

      

    


    
        © Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        		latest


      
    


  









  

search.html

    
      Navigation


      
        		
          index


        		
          modules |


        		snoop 0.7 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012, Andy Mastbaum.
      Created using Sphinx 1.1.3.
    

 





  
     TEST Brought to you by Read the Docs
     Test

    
      
        		latest


      
    


  









  

_static/comment-close.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





